Phase-pure iron pyrite nanocrystals for low-cost photodetectors

نویسندگان

  • Shenting Liu
  • Jiang Wu
  • Peng Yu
  • Qinghua Ding
  • Zhihua Zhou
  • Handong Li
  • Chih-chung Lai
  • Yu-Lun Chueh
  • Zhiming M Wang
چکیده

Earth-abundant iron pyrite (FeS2) shows great potential as a light absorber for solar cells and photodetectors due to their high absorption coefficient (>10(5) cm(-1)). In this paper, high-quality phase-pure and single crystalline pyrite nanocrystals were synthesized via facile, low-cost, and environment friendly hydrothermal method. The molar ratio of sulphur to iron and the reaction time play a crucial role in determining the quality and morphology of FeS2 nanocrystals. X-ray diffraction and high-resolution transmission electron microscopy confirm that phase-pure and single crystalline pyrite nanocrystals can be synthesized with high sulphur to iron molar ratio and sufficient reaction time. For the first time, a crystalline nanogap pyrite photodetector with promising photocurrent and UV-visible photoresponse has been fabricated. This work further demonstrates a facile route to synthesize high-quality FeS2 nanomaterials and their potential in optoelectronic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface thermal stability of iron pyrite nanocrystals: Role of capping ligands

a r t i c l e i n f o Keywords: Iron pyrite FeS 2 nanocrystals Thin films Ligand exchange Surface stability Photovoltaic Iron pyrite (FeS 2) is a promising photovoltaic absorber material with a high natural abundance and low cost, but surface defects and low photoresponse inhibit sunlight energy conversion. The surface stability of pyrite FeS 2 nanocrystals synthesized in oleylamine (OLA) with ...

متن کامل

Air stable, photosensitive, phase pure iron pyrite nanocrystal thin films for photovoltaic application.

Iron pyrite (FeS(2)) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS(2) film surfaces that lead to low open circuit voltages. We report the rational synthesis of phase pure, highly crystalline cubic FeS(2) nanocrystals (NCs) us...

متن کامل

The Study of Pure and Mn Doped ZnO Nanocrystals for Gas-sensing Applications

ZnO and ZnO: Mn nanocrystals were synthesized via reverse micelle method. The structural properties of nanocrystals were investigated by XRD. The XRD results indicated that the synthesized nanocrystals had a pure wurtzite (hexagonal phase) structure. Resistive gas sensors were fabricated by providing ohmic contacts on the tablet obtained from compressed nanocrystals powder and the installation ...

متن کامل

The Study of Pure and Mn Doped ZnO Nanocrystals for Gas-sensing Applications

ZnO and ZnO: Mn nanocrystals were synthesized via reverse micelle method. The structural properties of nanocrystals were investigated by XRD. The XRD results indicated that the synthesized nanocrystals had a pure wurtzite (hexagonal phase) structure. Resistive gas sensors were fabricated by providing ohmic contacts on the tablet obtained from compressed nanocrystals powder and the installation ...

متن کامل

High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries.

Iron pyrite is an earth-abundant and inexpensive material that has long been interesting for electrochemical energy storage and solar energy conversion. A large-scale conversion synthesis of phase-pure pyrite nanowires has been developed for the first time. Nano-pyrite cathodes exhibited high Li-storage capacity and excellent capacity retention in Li/pyrite batteries using a liquid electrolyte,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014